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ABSTRACT 

Maximum allowable systematic harmonics for arc dipoles in 
a Really Large Hadron Collider are derived. The possibility of 
half cell lengths much greater than 100 meters is justified. A 
convenient analytical model evaluating horizontal tune shifts is 
developed, and tested against a sample high field collider. 

I.    INTRODUCTION 

Both "low field" and "high field" concepts of a future Re- 
ally Large Hadron Collider (RLHC) were discussed at Snow- 
mass 96. Both concepts invoke novel magnet designs. The goal 
of this paper is to establish semi-quantitative estimates of what 
would constitute good or bad field quality in arc dipoles in ei- 
ther machine, and to directly draw the connection between field 
quality and maximum (optimum) half cell length. It is implic- 
itly assumed (after the discussion immediately below) that sys- 
tematic errors dominate random errors, and that they therefore 
deserve the closest attention. It is fortunate that this appears 
to be true for contemporary superconducting magnets - if not 
for future magnets using high temperature superconductor tech- 
nology - since it is far harder to make even semi-quantitative 
mathematical statements about random errors. 

A.    Do systematic or random errors dominate? 

In 1983, when the Ann Arbor SSC workshop was held, the 
SSC was little more than a gleam in the physicists eye. The 
proceedings of that workshop contain the first systematically 
documented attempts to predict SSC dipole harmonic errors [1]. 
These predictions rested heavily on extrapolations from the lim- 
ited experience with superconducting magnets then available - 
from the Tevatron and Isabelle/CBA. It was judged that, in gen- 
eral, random errors were expected to dominate systematic errors 
in SSC magnets. From the time that the official lattice was es- 
tablished in 1986 - in the Conceptual Design Report (CDR) of 
the SSC [2] - until the demise of the project in 1993, the SSC 
half cell length was consistently in the range Lssc = 100 ± 10 
meters. The tables of expected dipole harmonic errors that were 
used for tracking purposes did not change significantly in this 
period. However, an analysis of 10 or so of the last SSC dipoles 
built shows that the as built harmonics were, in most cases, 3 to 
10 times smaller than the expected CDR harmonics [3]. This 
implies that the SSC half cell length could have been much 
longer than 100 meters, and/or that it might have been possi- 
ble to remove some of the nonlinear correctors. 

Considerable experience has been gained since then, and the 
state of the art has been significantly advanced, with the con- 
struction of superconducting maenets for HERA-D and RHIC. 

RHIC experience is that, to the contrary of the SSC canon, 
systematic errors dominate random errors. Preliminarily, it also 
appears that systematic errors dominate random errors in LHC 
magnets [4]. RHIC demonstrated that systematic harmonic er- 
rors can be adjusted during industrial production, using mil-size 
adjustments of mid-plane caps and coil pole shims [5]. This was 
done without interrupting the production line schedule - without 
adjusting the coil/collar/yoke geometry, and with only negligi- 
ble redistribution of stress patterns. As a result, it was possible 
to reduce systematic harmonics in standard RHIC dipoles and 
quadrupoles to such an extent that the octupole and decapole 
correctors installed in the arcs will not be powered - except, 
perhaps, for the purpose of Landau damping. The only nonlin- 
ear correctors that will be powered in the arcs are two families 
of chromatic sextupoles. 

High field quality in arc dipoles is most important at injec- 
tion, when the beams are at their largest. It may therefore 
seem irrelevant that "tuning shims" in RHIC interaction region 
quadrupoles have been discovered to significantly improve top 
energy performance. However, the same tuning shim technol- 
ogy can also be used in arc dipoles at injection for the same pur- 
pose - to easily adjust several harmonics in an individual magnet 
after that magnet has been constructed and measured. Tuning 
shims could be used on each and every RLHC dipole magnet, 
to remove both systematic and random errors. Or, they could be 
applied to a single dipole at one end of each half cell, and a sin- 
gle dipole in the middle, in a "pseudo Simpson Neuffer scheme" 
that would correct many harmonics - at a single excitation. 

B.    Really Large Hadron Collider 

It is fiscally imperative that RLHC designs stress simplic- 
ity, reliability, and economy - three virtues that are closely re- 
lated. Complicated and copious magnet interconnects and spool 
pieces should be avoided wherever possible, in order to keep the 
average cost per meter low. One way to reduce the number of 
spools is to increase the half cell length as far as possible, be- 
yond the conventional 53.4 meters of the LHC, and 100 meters 
of the SSC. Spool complexity can be reduced by eliminating 
most or all of the nonlinear correctors from the arcs. It may 
even be possible to correct the closed orbit and the chromaticity 
with sparse dipole and sextupole correctors - less than one of 
each per half cell [6]. 

The busy or disinterested reader may wish to skip the next 
two sections of this paper, 'TUNE SHIFTS" and "MAXIMUM 
TUNE SHIFTS", which develop the mathematical model and 
demonstrate its accuracy with a high field RLHC example. It 
should be possible to go directly to section IV, "MAXIMUM 
ALLOWABLE HARMONICS", and pick up the story when it 
focuses on practical consequences and real numbers. 
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H.   TUNE SHIFTS 

The normal harmonic errors in a standard arc dipole are pa- 
rameterized by the coefficients bn in the expression 

By     — 1 + 
n      ' 

bn 
(1) 

where By is the vertical field at a horizontal displacement of 
xt from the design trajectory at the center of the dipole, and ro 
is the reference radius. As a test particle moves along a dipole 
with a single harmonic, the horizontal angle x't that it makes 
with the design trajectory changes at the rate 

d4 
ds 

Bo        bn (2) 
Bp(l + S)   rn   l 

where Bp is the on-momentum magnetic rigidity and S — Ap/p 
is the relative momentum offset. Assuming a perfect closed or- 
bit, the total horizontal displacement is given by 

Xt       -       X   +   T)S 

x     =    Ax cos((j>x) 

(3) 
(4) 

where x is the betatron displacement contribution, Ax and <f>x 

are the betatron amplitude and phase, and r\ is the dispersion 
function at that location. The rate of change of betatron angle 
is derived from Equation 2, after recognizing that the dispersion 
itself is modified by the error harmonic. This gives 

dx' Bo 
^[(x + rjSr (VST)     (5) ds Bp{l+S) 

To proceed to calculate the horizontal tune shift as a function of 
Ax and S, it is next necessary to derive the additional betatron 
phase advance as dipoles are traversed. 

Consider a single discrete angular kick Sx'. The additional 
betatron phase advance is given by 

6<f>x 
ßx cos <j)x . , 

Ax 

(6) 

where ßx is the horizontal beta function at that location. The 
total betatron phase advance in one turn, number n, is therefore 
given by an integral over all dipoles 

AMn) = -hp-^7-^ds        (7) 

The one turn phase advance fluctuates from turn to turn, since 
it depends on the initial betatron phase at the beginning of the 
turn, while the betatron tune shift AQX is found by averaging 
the phase advance over many turns. That is, 

where the angle brackets denote an average over many turns, or 
equivalently (it is assumed), an average over the initial betatron 
phase. Putting all this together, 

AQX   = (8) 

AQX   = bn I ßx cos <f>x .     . 
r,S)n 

(9) 

where the facts that 

and 

/ 
J dip 

So. 
Bp 

ds   =   1-K (10) 

/^os«^ {T]g)n\    =   0 (H) 

have been used. Angle brackets now denote a double average, 
over all the dipoles in the lattice and over the betatron phase. 

The tune shift is a function of the betatron amplitude and the 
(constant) momentum offset, which are conveniently parame- 
terized by mx and ms in writing 

j\x     —     mx &x 

rjS    =    ms as 

(12) 

(13) 

where the root mean square betatron and momentum beam sizes 
are 

cx     — 
jtxßx 

ißl) 

OS    —    v 

(14) 

(15) 

Here ex is the horizontal normalized emittance, and ap/p is the 
RMS relative momentum spread. 

A.    Master equation 

This allows the master equation to be written as 

AQX 
bn 

n-l-2i>0 

^     Cn,iAnii rrf-1-* m2J (16) 
i=0 rS(l + tf) 

where An,i are optical averages over dipoles 

A —In    „n-\-1i _2»'\ 
An,i    =    \Px <?s ax ) 

and Cn,i are constant coefficients 

1 n\{2i + 2)\ 
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(17) 

(18) 

These coefficients result from betatron phase averages of 
cosm(</>) terms, multiplied by binomial coefficients generated 
When Equation 9 is expanded into a polynomial series. Their 
values, up to 14-pole, are displayed in Table I. 

For illustration purposes, consider a simple lattice with a sin- 
gle short dipole in the middle of each half cell. The optical 
averages depend only on optical function values at the dipole. 
Tune shifts for different harmonic errors are given in Table II. 

B.    Scaling with cell length, emittance, and energy 

The optical averages An>i depend on the lattice, the emittance, 
the momentum spread, and the energy. To see how the tune 
shift scales, assume that there is a standard FODO cell in the 
arcs, with a phase advance per cell of <f>c. It is also necessary to 



Table I: Cn i coefficients for harmonics up to 14-pole. 

n Multipole * = 0 1 2 
1 Quadrupole 1/2 
2 Sextupole 1 
3 Octupole 3/2 3/8 
4 Decapole 2 3/2 
5 12-pole 5/2 15/4 5/16 
6 14-pole 3 15/2 15/8 

Table III: Numerically calculated values for a„>t- for fully 
packed FODO cells with <f>c = 90 degrees per cell. 

n Multipole i = 0 1 2 
1 Quadrupole 1.667 
2 Sextupole 2.412 
3 Octupole 3.608 3.467 
4 Decapole 5.555 5.381 
5 12-pole 8.753 8.536 8.340 
6 14-pole 14.06 13.78 13.53 

Table II: Tune shifts for the simple example of one thin dipole 
in the middle of each half cell. b'n — bn/(l + S). 

Multipole AQx  
Quadrupole b[ßx^~ 
Sextupole b'2ßx(r)8) 
Octupole b'3ßx [3/2{rjS)2 + 3/8A2] 
Decapole b'4ßx[2(r]6)3+ 3/2(T]S)AI] 

12-pole 6'5/?:c[5/2(7?<5)4 + lö^)2^ + 5/16A4] 
14-pole b'6ßx[S(V8f + 15/2(^)3^ + 15/8(iy?)^] 

assume some relationship between the betatron and momentum 
contributions to the total horizontal beam size. For example, 
suppose that the RMS momentum spread is manipulated with a 
fixed longitudinal emittance by adjusting the RF voltage, so that 
the two contributions are equal where they are largest 

<?6  =  &x (19) 

at the center of the horizontally focusing quadrupole. This 
is physically reasonable for a high field 30 TeV hadron col- 
lider [7]. It is then easy to show that 

^M = a„,<(*c)£(n+1)/2(^J (20) 

where L is the half cell length, and anj is a non-trivial function 
of (only) the phase advance per cell. This makes it possible (fi- 
nally!) to write down how the tune shift scales with cell length, 
emittance, and energy. Substituting Equation 20 into the master 
equation, Equation 16, gives 

AQX      = 
bn L(n+l)/2  [ f*. 

ßl r8(i + *) 
n-l-2»>0 

X       ]P       Cn,iCtn,i{<t>. 
»=0 

(n-l)/2 
(21) 
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This relatively ugly expression has the virtue of laying bare the 
dependence of the tune shift on all the parameters of interest. 

Table III lists the an,% values for a lattice with thin 
quadrupoles in which the FODO cells are fully packed with 
dipoles - a fair approximation for an RLHC - with a 90 degree 
phase advance per cell. The application of Tables I and III to 
Equation 21 is then straightforward, if messy. 

III.   MAXIMUM TUNE SHIFTS 

A numerical study of two high field RLHC designs has been 
performed, in order to verify the accuracy of the mathematical 
model, and to establish an approximate value for the maximum 
tolerable horizontal tune shift. Tables IV and V summarize the 
common primary parameters, and the different lattice parame- 
ters, for SHORT and LONG cell high field machines that are 
described in more detail elsewhere in these proceedings [7]. 

A.    Tracking results 

Figure 1 shows the tune shift versus momentum in the 
SHORT machine for various values of mx, with a systematic 
octupole harmonic of 63 = 5 x 10-4 in the top plot, and a de- 

Table IV: Primary parameters for a high field RLHC. 

Parameter units value 
Storage energy 
Injection energy 
Dipole field (store) 
Dipole coil ID 
Transverse RMS emittance, e 

[TeV] 30.0 
[TeV] 1.0 
[TJ 12.5 
[mm] 50 - 60 
[fim] 1.0 

Table V: Lattice parameters for SHORT and LONG cell high 
field machines, at injection. 

Parameter units SHORT LONG 
Half cell length, L [m] 110 260 

Max. cell beta, ß [m] 376 898 
Max. cell dispersion, 77 [m] 3.85 22.9 
Max. betatron size, dß [mm] .594 .918 
Circumference, C [km] 55.44 54.08 
Horizontal tune, Qx 65.195 28.195 
Vertical tune, Qy 66.185 29.185 
Number of dipoles 2888 2900 
Number of sextupoles 456 168 
Mmtm. width, ap/p [io-a] .1545 .0401 



capole systematic of 64 = 30 x 10~4 in the bottom plot. A 
reference radius of ro = 16 mm is used throughout. Solid lines 
in the figure show the predictions of the model developed above, 
while data points represent the tune shifts measured using the 
tracking code TEAPOT. 

The most striking general feature of these plots is that a sys- 
tematic octupole (decapole) harmonic generates curves with an 
even (odd) symmetry. Agreement between prediction and mea- 
surement is quite good at small mx and small mg, but not per- 
fect. This discrepancy is mostly due to the presence of disper- 
sion supressors, and the fact that the dipole packing fraction is 
only 81.8%, and not the 100% assumed in the model. Both 
of these factors throw the predicted optical averages An,i into 
error. The packing fraction in the LONG machine is 86.5%, 
leading to a significant reduction of the total circumference by 
1.36 km, or 2.5%. 

The horizontal base tune was lowered to Qx = 65.145 for this 
exercise, in order to place it approximately midway between the 
integer and fourth order resonances at 65.0 and 65.25, respec- 
tively. In principle, a perfectly smoothly distributed systematic 
octupole harmonic does not drive the fourth order resonance, 
due to vector cancellation. In practice, the cancellation is not 
perfect, and so the top plot clearly saturates at a tune shift of 
approximately +0.1, when the fourth order resonance is ap- 
proached. The bottom plot shows minimum tune shifts of ap- 
proximately —0.1, when the integer resonance is approached. 

0.15 

0.10 

0.05 

It is entirely within the semi-quantitative spirit of this paper 
that the model and the analysis only discuss 1-D motion, in the 
horizontal. A more rigorous discussion would also include ver- 
tical betatron motion - and would also include synchrotron os- 
cillations, and a whole host of realistic effects. As RLHC de- 
signs become more refined, so too must the simulations. At this 
point, when the RLHC is hardly even a gleam in the physicists 
eye, clarity and simplicity are more important than rigor. 

IV.   MAXIMUM ALLOWABLE HARMONICS 

While the previous section focused on the particular example 
of a 30 TeV high field collider, the conclusion that the maximum 
tolerable tune shift is 

AQX « 0.1 (22) 

is expected to hold in general - for any low or high field collider, 
at low or high energy, that conforms with the physical assump- 
tions made so far: 
1) systematic errors dominate random errors 
2) the collider has many fully packed FODO cells 
3) momentum and betatron beam sizes at F quads are equal 
4) (j>c = 90 degrees phase advance per cell 
5) chromaticity sextupoles are not pathologically strong 
It is relatively straightforward to derive the semi-quantitative re- 
sults, below, for phase advances per cell other than 90 degrees. 
For example, while maximum allowable harmonics are smaller 
at 60 degrees per cell, there is not much advantage in increasing 
<j)c beyond 90 degrees per cell. 

What is the necessary field quality in such a machine? How 
large can the half cell length L be? Suppose, for example, that 
the horizontal tune shift must be guaranteed to be less than AQX 

for all test particles in the betatron amplitude and momentum 
distribution range 

mx     <     m 

\ms\     <     m 

(23) 

(24) 
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The extreme tune shift occurs when mx = mg — m, and is 
given by 

AQm(m) = |A,m-1
JL(-+1)/2(^J (25) 

An irritating and negligible term (1 + S) has been unceremoni- 
ously dropped from the denominator of this equation, in order 
to make it as simple as possible in comparison with the more 
general result of Equation 21, from which it is derived. The 
sum in Equation 21 has been replaced by Dn, a function of the 

o ooo6 Pnase advance per cell, which is given by 

Figure 1: Tune shifts due to systematic octupole (top) and de- 
capole (bottom) harmonics in SHORT machine dipoles. Solid 
lines are predictions, while data points are measured results. 

Dn{<t>c 

n-l-2i>0 

E" 
j=0 

^n,i Öji,t(rc (26) 

Numerical values for Dn, derived from Tables I and III, are 
listed in Table VI. 



Table VI: Lowest order Dn values, with a phase advance of 
(/>c = 90 degrees per FODO cell. 10' 

n Multipole Dn 

1 Quadrupole .8333 
2 Sextupole 2.412 
3 Octupole 6.712 
4 Decapole 19.18 
5 12-pole 56.49 
6 14-pole 170.9 

Equation 25 is readily inverted, to give the maximum allowed 
systematic harmonic 

m2 cx 

(n-l)/2 

(27) 

For example, with AQx(m) = AQX — 0.1, an injection energy 
of 1 TeV, ex = 1 micron, and defining the edge of the particle 
distribution of interest by m = 3, then the maximum systematic 
harmonics are plotted for octupole through 14-pole harmonics 
in Figure 2. The lowest allowed harmonic, sextupole, is not 
shown in the Figure, since chromatic sextupoles are naturally 
available to correct 62. and a proper analysis of its maximum tol- 
erable value goes beyond the scope of this paper. The harmon- 
ics of most concern are the unallowed octupole 63, which has 
the tightest tolerances but which is naturally relatively small, 
and the allowed decapole 64, which is probably the most critical 
harmonic in practice. 

It is worth inspecting the scaling in Equation 27 with a criti- 
cal eye. The allowable systematic errors increase rapidly as the 
injection energy is increased - from 1 TeV to 3 TeV, for exam- 
ple - and as the injection emittance is decreased. Similarly, the 
chosen value of m is very important, and needs more discussion 
than the simple assertion, in this paper, that a value of m = 3 is 
reasonable. 

V.    CONCLUSIONS 

Lattices with relatively long arc cells have potential advan- 
tages, including significant cost savings, in a Really Large 
Hadron Collider. However, the susceptibility of the beam dy- 
namics to systematic arc dipole errors increases as the cell gets 
longer. Therefore, reasonable expectations for the achievable 
dipole field quality at injection play a strong role in determining 
the cell length - or vice versa. 

For example, if beam with a normalized emittance of 1 micron 
is injected at 1 TeV into a lattice with half cells L — 300 meters 
long, then dipoles with a systematic decapole of 64 ~ 3 x 10-4 

(at a reference radius of 16 mm) will provide barely adequate 
performance. Higher values of this allowed harmonic would in- 
crease the horizontal tune shift beyond the rule-of-thumb phys- 
ical maximum of AQX & 0.1. The systematic tolerance at the 
same half cell length for the next allowed harmonic, the 14-pole, 
is be ~ 30 x 10~4. For the unallowed octupole and 12-pole 
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Figure 2: Maximum allowable systematic harmonics versus half 
cell length, when AQX = 0.1, ex = 1 micron, and m = 3, at an 
energy of 1 TeV. 

harmonics the equivalent tolerances are 63 ~ 0.8 x 10     and 
65 ~ 10 x 10-4, respectively. 

Future hadron colliders with half cell lengths of a few hun- 
dred meters are cost effective, with adequate beam dynamics 
performance. This is especially true for high field colliders, in 
which the radiation damping forgivingly allows less stringent 
field quality tolerances. 
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